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Abstract

In this talk we discuss the effects of the phase slip due to the thermal

creation of vortices in confined liquid Helium-four below the lambda

point. In a narrow tube there is a finite probability of thermal activa-

tion of a vortex in the superfluid Helium, with the vortex not parallel

to the axis of the tube. In the presence of a heat flow along the tube,

the vortices experience the Magnus forse, which prevents exact can-

cellation of the motion of thermally activated vortices traversing the

cross-section of the tube in opposite directions. Each crossing of the

tube by a vortex causes a 2π phase slip of the superfluid order param-

eter along the tube. A temperature gradient results, which is propor-

tional to the rate of phase slip, thus yielding a non-vanishing thermal

resistivity below the bulk lambda point. The calculated temperature

dependence compares well with experimental data, thereby providing

indirect evidence of the presence of vortices in thermal equilibrium.

Key words: confined superfluid, helium, phase slip, thermal resistiv-

ity, vortex.
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1 INTRODUCTION

Many years ago, in his celebrated studies of the theory of superfluid Helium-

four, Feynman suggested that the lambda transition might result from the

presence of vortex loops and rings. These would become more abundant with

increasing temperature, leading to the developement of a kind of entangled

network that could destroy the quantum mechanical order. This picture of

vortices being the primary agent, or even sole agent, for the lambda transi-

tion has continued, through the years, to receive a great deal of attention.

On the other hand, the standard approach to the critical dynamics for a sys-

tem with a two-dimensional (i. e., quantum mechanical) order parameter has

been based on fluctuations within the framework of the Ginzburg-Landau

free energy functional. These are generally in the form of plane-wave-like

Fourier components. The thrust of this paper is to attempt to reconcile the

two different schools of thought by demonstrating that, although there can

be no question of the success of the Ginzburg-Landau approach, there is clear

experimental evidence of the presence of an equilibrium ensemble of vortices

in the superfluid state close to the lambda point. The evidence comes from

a phenomenon that is described briefly in a recent publication [1] and which

is reviewed in Section II below. When the superfluid is contained inside a

tube of small diameter a slight, strongly temperature dependent residual

resistance is observed just below the bulk lambda transition point. This we

have been able to attribute to the motion of vortices across the cross section

of the tube. In the present paper we want to turn the situation around and

regard our treatment as sufficiently reliable that we can use it as a ”diag-
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nostic tool” which indicates to us that there is a population of thermally

excited vortices. The theory of this phenomenon procedes in two steps:

1)To first approximation, a barrier to the motion of the vortices is placed

at the saddle-point configuration so as to lead to a ”quasi-equilibrium” dis-

tribution which is distorted by the transverse forces that are exerted on

the vortices as a consequence of the heat flow. This perturbed distribution

is fixed near the inside wall of the tube, where usual equilibrium prevails

for the vortices of small length. Consequently, the probability distribution

on one side of the barrier is larger than its normal equilibrium value while

on the other side it is smaller; 2)This asymmetry then serves as a kind of

boundary condition near the barrier when the latter is lowered to permit

some vortex motion across it, as described by Kramers theory for this kind

of process. The computation leads to a rate of passage over the saddle-

point barrier that is proportional to the equilibrium probability of finding

a thermally excited vortex in the saddle-point configuration. For simplicity,

the effect on this probability from fluctuations in the shape of the vortices,

studied by us to some extent [2], will not be dealt with here. One important

detail worth emphasizing, nevertheless: the probability has the form of a

Boltzmann factor, the exponent of which contains a logarithmic dependence

on the temperature. This is a robust and inescapable feature of the theory

which invites experimental test, doubtless, however, requiring the sensitivity

and precision to be achieved only in a microgravity environment.
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2 DISSIPATION AND PHASE SLIP IN CON-

FINED SUPERFLUID HELIUM

2.1 When is a superfluid not superfluid?

Consider the axial flow of heat in a sample of liquid 4He that is contained

in a long right circular cylinder of radius r0, as studied experimentally by

Kahn and Ahlers [3] and reviewed recently by Ahlers [4]. Depending upon

the value of r0, this lateral confinement has a pronounced effect on the

thermal conductivity which, in the unconfined bulk fluid, would diverge at

the lambda point. This divergence is well understood [5] to be a consequence

of the diverging mean lifetime of the longest wavelength fluctuation modes

of the order parameter. Such a critical slowing down is characteristic of

a second order phase transition, and is related in turn to the divergence

at the critical point of ξ, the correlation length. The confinement that is

under consideration here serves to interrupt this familiar critical behavior

of ξ once it has grown to be comparable to r0. The effect on the thermal

conductivity in the vicinity of the bulk lambda point, as well as below it to

some extent, has been studied by Hausmann [6]. The work that we report

here applies to temperatures further below, where ξ shrinks to values much

smaller than r0. Although the 4He is then in a state of broken symmetry, has

developed a well-defined order parameter, and has become almost perfectly

superfluid, the thermal resistance does not, in fact, drop to zero. This

follows from the normal-fluid viscosity µn and from the ”sticking” boundary

condition at the inner surface of the confining cylinder that is imposed on
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vn, the axial component of the velocity of the normal fluid. The Poiseuille

velocity profile for vn, corresponding to the vanishing of vn at the boundary,

implies a pressure gradient proportional to the mean value of vn, and, thus,

proportional to the heat current. In steady state there is no acceleration of

the superfluid and the fountain-effect relationship applies, yielding

gradT =
1
nσ
gradP , (2.1)

where n and σ are the atomic density and the entropy per 4He atom, re-

spectively. Because these parameters, as well as µn, do not exhibit any pro-

nounced critical variation, Eq. (2.1) contributes a non-critical background

resistivity, as mentioned by Ahlers [4] and also discussed elsewhere [7], [8].

2.2 Vortices

The non-critical background thermal resistivity expressed by Eq. (2.1) de-

pends upon the above assertion of a well-defined order parameter, and tac-

itly ignores any fluctuations in the order parameter. For ξ � r0, these

are obviously quite localized and can be expected to appear and promptly

disappear, causing no long-term effect on the steady-state behavior of the

order parameter. Thermally excited vortices, on the other hand, can have

a quite different effect. These topological singularities have an intrinsic sta-

bility in their lateral structure (i.e., transverse to the vortex core) and can

grow or disappear only by changes in their length. To the extent that they

can be as long as 2r0, thus spanning across a diameter of the tube in a

saddle-point configuration [8], they can migrate across the tube and with

each such event produce a phase change in the order parameter of 2π. In
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thermal equilibrium, we can anticipate that such migrations will occur with

equal probability in opposing directions so that no net superfluid accelera-

tion is required for maintaining steady state flow, thus leaving Eq. (2.1) as

the sole origin of the temperature gradient. The cancellation is, however, no

longer complete when the system is perturbed by the normal fluid flowing

past the vortices. The computation of this non-equilibrium effect that we

will be carrying out in the following subsections depends in an important

and essential way on the equilibrium probability of a saddle-point vortex.

We denote this by ρeq(0) and proceed now to examine it in detail.

The superfluid velocity encircling a quantized vortex has the space de-

pendence

vs ∝ r−1 , (2.2)

where r is the distance from the center of the vortex core. The kinetic energy

density is consequently of the form

ρs

2
v2s ∝ ρs

2
· 1
r2

(2.3)

ρs being the superfluid density. An integration with upper and lower cut-offs

at the cylinder radius and at the correlation length, respectively, yields, for

a vortex length equal to the full diameter,

G0 ∝ 2r0
∫
ρs

2
d2r

r2
∝ r0ρs ln

r0
ξ
. (2.4)

(A more careful attention to these cutoffs will be provided elsewhere [7].)

We need the Clow-Reppy critical temperature dependence,

ρs/ρ = 2.4|t|ν = 2.4ξ0/ξ (2.5)

7



in terms of ξ, with ξ0 = 0.7
◦
A, and we take further numerical factors from

the detailed work of Rayfield and Reif [9]. We consequently obtain for the

Gibbs free energy of a saddle-point vortex divided by the temperature (in

units of energy)

Ω =
G0

T
= 0.6

r0
ξ

ln
r0
ξ

= 0.6X lnX , (2.6)

where

X ≡ r0/ξ . (2.7)

The intrinsic probability is, therefore, given by the Boltzmann factor

ρeq(0) = exp (−Ω) (2.8)

2.3 Quasi-Equilibrium

The heat current density is proportional to the local axial normal fluid ve-

locity, according to

Q = Tρσnvn ∼= Tλρλσvn , (2.9)

where, close to the lambda point, the temperature, entropy, and mass density

can be approximated by their lambda-point values. Having only heat flow

and no mass flow requires a counterflow of the superfluid at velocity vs

according to

ρsvs = ρnv̄n , (2.10)

with the bar indicating the cross-sectional average. ¿From Eq. (2.5) this

becomes

vs =
ρn

ρs
v̄n ∼= ρ

ρs
v̄n =

ξ

2.4ξ0
v̄n . (2.11)
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In terms of the distribution of the 4He atoms in momentum space this dis-

places the delta function (representing the discrete contribution of the order

parameter) away from the origin by

mvs
h̄

=
mξ

h̄ξ0
vn ∝ ξQ , (2.12)

where m and 2πh̄ are the 4He mass and Planck’s constant, respectively. As

the lambda point is approached from below for fixed Q, Eq. (2.12) signifies

that the displacement will increase until it becomes comparable to ξ−1, the

breadth of the fluctuation cloud surrounding the delta function. This will

lead to a departure from non-linearity. The limiting criterion for linearity

thus becomes the scaling relation

Q ≤ Qnon−lin ∝ ξ−2 ∝ t2ν (2.13)

for a given temperature. For a given heat current, Q, this translates into

|t| ≥ |t|min ∝ Q 1
2ν . (2.14)

Equation (2.14) also applies for t > 0, with a somewhat similar theoretical

basis [10, 11]. In the present context, the counterflow can be expected to

generate additional vortices [12] that are not taken into account by our

theory. The actual experimental upper bound on Q for linear heat flow

may, therefore, be smaller than Qnon−lin of Eq. (2.13).

An essential assumption in our treatment of the movement of the vortices

is that the inner wall of the confining cylinder is sufficiently smooth on the

mesoscopic scale of ξ 
 ξ0 that there is no pinning of the vortices to the

walls. We, thus arrive at the picture of the vortices being carried along with
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the superfluid, with the normal fluid passing by them at relative velocity

vs + vn or simply vs (because vn � vs). Let l(x) be the half-length of a

”minimal” vortex, i.e. one in the shape of an arc of a circle, lying in a

plane perpendicular to the axis of the cylinder, and with both ends normal

to the cylinder wall. The coordinate x is the distance from the arc center

to the cylinder axis, so that x = 0 specifies the saddle point configuration,

with l(0) = r0. In the absence of heat flow we would have the equilibrium

probability

σeq(x) = exp [−l(x)Ω/r0] , (2.15)

reducing to Eq. (2.8) for x = 0.

For the purposes of this calculation, we can treat F, the Magnus force

per unit length of the normal fluid acting on a vortex, as a conservative force

described by the potential energy

VM (x) = −FA(x) , (2.16)

with A(x) being (π/2)r20 minus the area enclosed by the arc. In other words,

A(x) is the area lying between the arc and a diameter: thus, A(x) vanishes

for x = 0 and is equal to 2r0x for |x| � r0. It is evident that our choice of

sign for x is such that the Magnus force of Eq. (2.16) will tend to cause the

vortices to move in the direction of increasing x. It is convenient, however,

to imagine a model in which the vortices are not free to move. A quasi-

equilibrium would then be developed, of modified probability

ρq−eq(x) = exp [−l(x)Ω/r0 +A(x)F/T ] ∼=
[
1 +A(x)

F

T

]
ρeq(x)
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= ρeq(x) + ∆ρeq(x) . (2.17)

The perturbation caused by the Magnus force is, thus, to first order in F,

∆ρeq(x) = A(x)
F

T
ρeq(x) . (2.18)

Of special interest will be the asymmetry introduced for the very short

vortices close to the cylinder wall, of l� r0 and |x| ∼= r0 for which

∆ρeq(±r0) = ±πr
2
0

2T
Fρeq(±r0) (2.19)

and

∆ρeq(r0) − ∆ρeq(−r0) =
πr20
T
Fρeq(±r0) (2.20)

(because ρeq(r0) = ρeq(−r0), by definition).

2.4 Saddle-point passage

Returning to Eq. (2.17) and substituting : l(x) = (r20 − x2)1/2 = r0 −

x2/(2r0) + . . ., we see that near the saddle point

ρq−eq(x) ∼= ρq−eq(0) exp [x2/x2
0] (2.21)

with a characteristic length defined by

x0 =
√

2r0Ω−1/2 (2.22)

Aided by the work on phase slip in superconductors of McCumber and

Halperin [13] and of Ambegaokar and Halperin [14] as well as by that of

Langer [15] on nucleation, we apply the method of Kramers [16] by tak-

ing ρq−eq(x) as a jumping-off point. Allowing the vortices now to drift, we

obtain the probability distribution for the non-equilibrium system as

ρnon−eq(x) = ρq−eq(x) + ∆ρq−eq(x) , (2.23)
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where the additional perturbation from the transport properties has an

asymmetric form

∆ρq−eq(x) = f(x)ρq−eq(x) . (2.24)

An exact solution for f(x) from the Kramers transport equation by the

method of ”variation of constants” is readily obtained [7] in the form of the

error function. It suffices here, however, to adopt a slightly less quantita-

tive and more heuristic approach by limiting ourselves to the asymptotic

behavior

f(x) ||x|�x0
= fasymp(x) = −f0sgn(x) . (2.25)

This sets in as soon as the vortex is further from the saddle point than the

characteristic distance x0. This parameter is a measure of the sharpness

of the saddle point and determines the steepness of the descent down into

the valleys on either side. The connection of the probability current for

the steady state drift, J, to the constant f0 is determined by the diffusion

coefficient, D, and is most easily evaluated at the minimum of ρq−eq(x).

Thus, from Eqs. (2.23) and (2.24),

J = −Dδρnon−eq(x)
δx

= −Dδ∆ρq−eq(x)
δx

= −Dρq−eq(x)
df

dx
. (2.26)

Because f changes to its full asymptotic value in an interval of the size x0,

we have

J = D
f0
x0
ρq−eq(0) , (2.27)

up to a numerical factor of O(1).
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It remains to fix f0 by means of an appropriate boundary condition. The

final solution to the transport problem is the perturbed probability distribu-

tion function, ρnon−eq(x). Returning to Eqs. (2.23-2.24), and substituting

(2.17) yields

ρnon−eq(x) = [1 + f(x)] ρq−eq(x) ∼= [1 + f(x)]
[
1 +A(x)

F

T

]
ρeq(x)

∼=
[
1 + f(x) +A(x)

F

T

]
ρeq(x) , (2.28)

to first order. For the required boundary condition we adopt

ρnon−eq(±r0) = ρeq(±r0) , (2.29)

which expresses the idea that the Magnus force perturbs the distribution

inside the cylinder, but not at its walls. We assume that at the walls the

usual relaxation processes are strong enough to maintain unperturbed equi-

librium. This boundary condition requires that the two first-order terms in

Eq. (2.28) cancel, yielding

f(±r0) = −F
T
A(±r0) = ∓π

2
Fr20
T

(2.30)

which, by substitution from Eq. (2.25), becomes

f0 =
π

2
Fr20
T
. (2.31)

In substituting Eq. (2.31) into Eq. (2.27), it is usual to recall the Einstein

fluctuation-dissipation theorem : µ = D/T , which expresses µ, the mobility

of a vortex, in terms of its diffusion coefficient. By substitution from Eq.
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(2.22) and by the introduction of Ftot = 2r0F for the Magnus force acting

on a saddle-point vortex, Eq. (2.27) becomes

J = Ω1/2µFtotρeq(0) , (2.32)

again with the neglect of numerical factors of O(1). Aside from the tem-

perature dependent dimensionless factor Ω1/2, this result has the simple

physical interpretation of vortices being dragged across the saddle-point at

rate µFtot.

3 SUMMARY

In this paper we have presented a theory which provides a ”diagnostic tool”

which indicates the existence of a population of thermally excited vortices in

confined liquid Helium-four below the lambda point. Serving as a fingerprint

of the presence of this population of vortices is our predicted temperature

dependence of the thermal resistivity in the tube filled with liquid 4He .

This dependence is expected to have the form of a Boltzmann factor, the

exponent of which logarithmically depends on the temperature. A direct

experimental test of this theoretical prediction should be possible, although

it would seem to require the sensitivity and precision to be achieved only in

a microgravity environment.
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